
Commands represent actions the robot can take. Commands enforce structure into how we tell the
robot to make it more predictable. All commands share the same structure so once you learn that
structure you will be able to write complex actions with the simple building blocks of Commands!

Basic commands have 4 components that are related to the action desired.

The Initialize method is called only once at the beginning of the command

the execute method is called every periodic cycle (every 20ms) code you put in here is run over
and over again until the command is finished.

the isFinished method is where we determine if the command should be finished it is also run every
periodic cycle (every 20ms). Some commands we want to run until another command needs the
subsystem and therefore we will return false. Others run until a condition is met and that logic is
put within the isFinished method to return true when the command is supposed to end

This method is called at the End of the command once isFinished is True or another command
needs the subsystem. Here we often set things back to the way they were before the command
ran.

First write out what you want the robot do so using template

Introduction to Commands

Why Commands?

The 4 Parts of a Command

Initialize

Execute

isFinished

End

Writing Commands in English

First _________, then do ___________, Until ________, Finally do ________

For example if we want the robot to score a game piece from the claw it could be

First Set claw motor to spit, then do ___________, Until Claw no longer sees game piece,
Finally do set claw motor to zero

Or another example, we want the robot to drive around

First _________, then do command drivetrain based of current joystick values, Until ________,
Finally do set drivetrain motors to zero

We can create a new file and class to hold our command in that will look like. Command names are
always Capatalized because they are the name of a java class

Notice how we don't always have to fill out every box

Writing Command in Code (class)

public class CommandName extends CommandBase {

 Subsystem subsystem = Subsystem.getInstance()

 public CommandName() {
 addRequirements(subsystem);
 }

 @Override
 public void initialize() {

 }

 @Override
 public void execute() {

 }

 @Override
 public boolean isFinished() {

 }

Notice first how the class extends and inherits from CommandBase. From there we have the 4
basic parts of a command for our code to be executed.

inside the constructor we had the line addRequirments(). What if I asked you to type an essay and
juggle? You cant because you would need your hands to only be doing one. The same is true for
the robot we cannot ask the same hardware to do 2 things at once. The same is true for commands
however you must define what subsystems the command uses so that no two commands that
share a subsystem can run at the same time

often we don't want to have to define a whole file for simple command so we use a process wpilib
calls composition. WPILIB has many options for writing commands depending on which of the 4
components we need we can write commands very similarly to as if we were writing them out in
plain English.

Within a subsystem if only need to call a function once or use the initialize of a command you can
do the following

Here we call the define a function doMyThing() which will return the command for use. The
command is created by the runOnce() method. This method takes in the name of a function in a
special format called a Lambda. This way lets the code call that function within the command
instead of running the function right now.

 @Override
 public void end(boolean interrupted) {
 }
}

Writing Commands in Code (Composition)

runOnce

public Command doMyThing() {
 return this.runOnce(this::methodName)
}

Lambda expressions can look scary but are just the name of a function that the computer
can use to call a function later. They can look two different ways one being the
object::method or () -> object.method() we can even write small lines of code inside a
lambda like () -> { awesome code line1; great code line 2}

runEnd

if instead inside a subsystem we need the initialize and the end we can instead use the runEnd()
function

This method is super useful for running commands where we want to at the beginning set a motor
to a value and at the end zero the motor out. For example if I want when I press a button for a
motor to spin, runEnd is how we would accomplish that

With just runOnce and runEnd we can accomplish a lot but sometimes we would like to change the
isFinished or modify how the command is to be run. WPILIB Commands have a many methods that
modify the command to do what we want called decorators.

the until decorator takes a command and allows us to set a condition for when the command
should end. We pass in a Lambda for a function or code that will return a boolean that is what we
want for isFinished

A special case is we often want a command to run for a specified amount of time or even exit even
if it it not done after the time. We can accomplish this behavior with the withTimeout

public Command doMyThing() {
 return this.runEnd(this::initialMethod,this::endMethod)
}

Modifying Commands

until

private boolean isMySensor() {
 return inputs.mySensorValue
}

public Command doMyThing() {
 return this.runOnce(this::initialMethod).until(this::isMySensor)
}

 withTimeout

public Command doMyThing() {
 return this.runEnd(this::initialMethod,this::endMethod).withTimeout(numSeconds)
}

References

WPILIB Commands Introduction
WPILIB Command Composition

Revision #5
Created 12 July 2023 19:51:21 by jheidegg
Updated 12 July 2023 20:57:16 by jheidegg

https://docs.wpilib.org/en/stable/docs/software/commandbased/commands.html
https://docs.wpilib.org/en/stable/docs/software/commandbased/command-compositions.html

