
This will outline the basic steps for setting up a photon vision sim with the new sim overhaul from
photon vision. There were few resources out there so this is just an example to get up and running
with integrations with advantage kit for viewing.

clone the latest development version of photonvision then build the library following the following
steps outlined in the official documentation and outlined below.

in the photonvision folder run the following to build and install a local copy of the latest library

Photon Vision Simulations
Example

Library install (If still in prerelease)

./gradlew generateVendorJson

./gradlew publishToMavenLocal

https://wiki.team3176.com/uploads/images/gallery/2023-08/screenshot-from-2023-08-06-13-44-39.png
https://github.com/PhotonVision/photonvision/pull/742
https://github.com/PhotonVision/photonvision
https://docs.photonvision.org/en/latest/docs/contributing/photonvision/build-instructions.html#using-photonlib-builds

be sure to add the vendor json photon-lib/build/generated/vendordeps/photonlib.json and add the local
maven repository tag in your build.gradle

the new system revolves around the class VisionSystemSim (Note this is different than the official
soon to be deprecated SimVision). This class is responsible for updates and coordination of
simulated elements and "real" interfaces. Photon Vision relies on NT4 and thus the simulation only
has to spoof publish to the same topics a real camera object would receive on.

First lets create a subsystem to hold and call a periodic function to update the simulation.

Create the VisionSystemSim

then we would like to setup a Transform3d to represent the position of the simulated camera

Then create the real camera object if not already defined in the real robot code. then create the
simulated camera object which is linked to the real camera to spoof the NT4 readings for it. The
PhotonCameraSim also allows for a json to be loaded to mimick the exact setup of your hardware. I
have selected a preset Limelight default which sets the lens distortion and latency. The final two
parameters set the percent for tag detection and the max detection range in meters

repositories {
 mavenLocal()
}

VisionSystemSim Initialization

public class SimPhotonVision extends SubsystemBase{
 public SimVisionSystem() {
 }
 @Override
 public void periodic() {
 }
}

public class SimPhotonVision extends SubsystemBase{
 VisionSystemSim simVision = new VisionSystemSim("photonvision");

 double camPitch = Units.degreesToRadians(10); // radians
 double camHeightOffGround = 0.8; // meters
 Transform3d cameratrans = new Transform3d(
 new Translation3d(0.0, 0, camHeightOffGround), new Rotation3d(0, camPitch, 0));

Once the simCam has been created it needs to be added to the instance of VisionSystemSim
passing the simulated camera and the Transform3d representing its location relative to the robot
origin.

Next targets must be added to the vision system. I have added the default targets from the
AprilTagFields object. This can throw and exception to so for now we lazily catch it.

Example of a manual target being added

Inside the periodic a robot pose must be given to the vision simulation to generate the frames. This
is outside the scope of the current article but there are examples of how that can be simulated in
the official photon vision documentation here.

This can either be a Pose3d or Pose2d. I have opted to pass in a Pose2d

PhotonCamera realCam;
PhotonCameraSim simCam;
public SimPhotonVision() {
 realCam = new PhotonCamera("camera1");
 simCam = new PhotonCameraSim(realCam, SimCameraProperties.LL2_960_720(),0.05,20);

simVision.addCamera(simCam, cameratrans);

try {
 simVision.addVisionTargets(AprilTagFields.k2023ChargedUp.loadAprilTagLayoutField());
}
catch(Exception e) {
 System.out.println("woops can't load the field");
}

Manual targets can be added. One pitfall is that the apriltag ID MUST be set when
constructing. ex new VisionTargetSim(targetpose3d, TargetModel.kTag16h5, ID)

//Example Manual Target Added
simVision.addVisionTargets(new VisionTargetSim(t2pose,TargetModel.kTag16h5,2));

Periodic Update

public void periodic() {
 Pose2d currentPose = Drivetrain.getInstance().getPose();
 Pose3d current3d = new Pose3d(currentPose)

https://docs.photonvision.org/en/latest/docs/programming/photonlib/simulation.html

Now results can be read from the real camera interface as if it was connected to hardware!

Just remember to check the results to see if hasTargets() is true

Advantage kit can take in a series of Pose3d objects to be displayed at vision targets. There is a
small amount of processing that converts the transforms into concrete3d Poses for display

then if results.hadTargets() is false simply log an empty array

You can view generated frames from the camera at the urls listed in CameraPublisher. Both the
Raw and Processed versions. Below is an example of a processed frame.

Ex: http://photonvision.local:1182/

 simVision.update(currentPose);

var results = realCam.getLatestResult();
if (results.hasTargets()) {
 //log targets
}
else {
 //log empty list
}

AdvantageKit Logging Results (optional)

ArrayList<Pose3d> targets = new ArrayList<Pose3d>();
for(PhotonTrackedTarget t :realCam.getLatestResult().getTargets()) {
 targets.add(current3d.transformBy(cameratrans).transformBy(t.getBestCameraToTarget()));
}
Logger.getInstance().recordOutput("photonvision/targetposes", targets.toArray(newPose3d[targets.size()]));

Logger.getInstance().recordOutput("photonvision/targetposes", new Pose3d[] {});

Simulation Results

http://photonvision.local:1182/

Simulation the robot code with AdvantageKit

drag AdvantageKit/RealOutputs/photonvision/targetposes to the "3D Poses" section of the "3D
Field" then select the outputs then select Vision Target

Then set the output of the robot pose to a Robot object in "3D Field". The result should be green
lines from the robot to the vision targets'

Advantagekit (Optional)

https://wiki.team3176.com/uploads/images/gallery/2023-08/screenshot-from-2023-08-06-14-30-05.png
https://wiki.team3176.com/uploads/images/gallery/2023-08/screenshot-from-2023-08-06-14-26-41.png

Revision #4
Created 6 August 2023 19:42:07 by jheidegg
Updated 7 August 2023 00:18:34 by jheidegg

https://wiki.team3176.com/uploads/images/gallery/2023-08/screenshot-from-2023-08-06-14-28-25.png

